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1 Introduction 
 
This 18-month project was a “seedling” effort to generate new research directions 
in scalable redundancy.  Redundancy is a core tenet of robust system design, 
and has been employed as a defense against system failure and/or compromise 
for decades.  A common example of redundancy as employed to mask the failure 
of a server, for example, is to employ multiple, synchronized replicas of the 
server.  If a benign failure is to be tolerated, then a primary may typically serve 
requests, and clients may “fail over” to a backup if the primary fails.  To tolerate 
Byzantine [29] server failures, a strategy is to employ multiple replicas of the 
server, each initialized identically, and have clients issue queries to all of them, 
typically in the same order (so that servers retain synchronized state).  The client, 
then, can use the responses from the server replicas as “votes” as to the correct 
response.  This approach is often called “state machine replication”, “active 
replication”, or “n-modular redundancy” [48]. 
 
Systems that employ redundancy and distribution often do not scale well as the 
number of replicas grows.  This can result from many different phenomena. For 
example, if the number of replicas grows dynamically and opportunistically, then 
this presents challenging search problems, namely finding suitable hosts for 
deployment of replicas and, once deployed, for enabling clients to find replicas.    
As another example, the core protocols underlying a technology like state 
machine replication tend not to scale well in particular technical measures, such 
as the message or communication complexity of the query and response 
protocols.  Indeed, in this approach, it is typically the case that adding new 
servers only slows down the service, since it increases the protocols’ obligations 
e.g., to order requests among more servers. 
 
As a “seedling” effort, our goal was to examine a variety of directions for gaining 
scalability in systems that employ redundancy.  Of the approaches we explored, 
the two detailed in this report are the directions we matured the most during the 
duration of this project.  The first direction is targeted at the resource location 
issue above, i.e., to find hosts suitable for the deployment of replicas or to find 
replicas of servers or objects themselves.  So as to make our approach to this 
problem as general as possible, we abstracted this problem into simply that of 
keyword search in a network, i.e., to identify hosts holding files containing 
selected keywords.  As these files can include, e.g., object names, service 
names, or available resources, this technology can easily be specialized to 
support the location of replicas or suitable hosts for them. 
 
The second effort that we describe here targets the scaling limitations of 
redundancy protocols themselves.   Specifically, we developed new protocols for 
implementing a Byzantine fault-tolerant data storage service.  Our new protocols 
draw techniques from our prior work on adapting quorum systems to mask 
arbitrary replica failures (corruptions) [31][33].  In this approach, clients interact 
with only a subset (quorum) of server replicas in each request.  In contrast to 
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state machine replication, this approach can achieve load balancing in a 
replicated service, and so can scale better.  Moreover, we believe our protocols 
are the first to achieve linearizable data semantics [21] for read-write storage in a 
scalable fashion. 
 
Both of our efforts have yielded encouraging follow-on developments, one a 
successful transition to the government and one to a submission to the Self-
Regenerative Systems program from DARPA IPTO.  First, the tool we developed 
for distributed keyword search, called Mingle, was adopted by the security officer 
in National Climate Data Center (NCDC; http:/www.ncdc.noaa.gov) to search 
distributed network logs for network monitoring and management.  NCDC is the 
world's largest archive of weather data and also does analysis of weather data 
and current weather trends. Being a government organization, and having 
multiple high-speed connections and much storage space, they get their fair 
share of attackers trying to break into their servers.  For network monitoring and 
management, NCDC collects gigabytes of traffic logs (tcpdump files, email server 
logs, Web server logs, etc.) on numerous distributed computers on a daily basis.  
The security officer uses Mingle to index and search through these logs quickly 
to see if an IP address has been to their network before, to look for access 
patterns for a specific IP address, to search for keywords that correlate individual 
user's network activities, etc.  Since logs are distributed around the center, 
security is important to prevent unauthorized access. In addition, the speed that 
Mingle provides and its scalability to search a large intranet also make Mingle 
appealing for this usage.  Though this is not specifically the use of Mingle that we 
had anticipated, this example is a compelling dual use for this technology, and 
we are excited that it has found use in the government. 
 
The second follow-on development to the work described here is that the second 
effort described above has formed a starting point for a new submission to the 
Self-Regenerative Systems program from DARPA IPTO, which we have been 
given preliminary indication will be funded.  To the extent that such indications of 
government interest are the measure of success for a “seedling” effort such as 
this, we believe this project has been fruitful. 
 
1.1 Publications 
 
Papers describing portions of the work in this project were or will be presented at 
the 11th IEEE International Symposium on High Performance Distributed 
Computing and the 2004 International Conference on Dependable Systems and 
Networks. 
 
1.2 Patents 
 
There were no patents filed as a result of this project. 
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1.3 Financial Summary 
 
The full budget of $588,539.00 was expended during the performance period.  
This money was used primarily to support graduate students working on the 
project, as well as faculty members involved in this project. 
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2 A Secure Distributed Search System 
 
Although there are a number of useful tools for locating data on a single 
machine, locating data in a distributed environment can be troublesome. Tools 
like grep and find are good for searching small directory hierarchies, but are 
inappropriate for searching entire disks. The GNU locate command provides 
fast keyword search of file names, but not the contents of those files. Tools, such 
as Glimpse [34] and Windows Indexing Service, precompute inverted index 
tables of local files. Each entry in the index table stores a word and its 
occurrences in the files, which enables fast keyword querying. However, these 
tools do not support querying across different computers. Peer-to-peer 
applications such as Napster1, Gnutella2 and Freenet [10]  have been used for 
large-scale locating and sharing of MP3 files. A drawback of such systems is that 
there is no security mechanism to protect data from access by unauthorized 
users.  In addition, no indexing is provided to quickly locate information. 
 
Thus, we believe we need new systems that help people and applications find 
data in distributed computing environments.  These systems should be both 
efficient, in the sense that searches complete quickly, and secure, in the sense 
that unauthorized users are not allowed to locate data. So how might we build 
such systems? 
 
A straightforward solution is to build a global indexing service, where dedicated 
servers crawl files from every computer on the Internet and then compute a 
centralized index table.  Search engines like Google3 have used this kind of 
scheme very effectively for the Web. However, the centralized model is 
inappropriate for searching personal computing systems and other nonpublic 
data for a number of reasons.  First, indexing is an expensive operation requiring 
large amounts of memory and disk space. Even massive search engines like 
Google can index only limited number of Web pages. Therefore, centralized 
indexing servers do not scale with the increasing number of computers and the 
exploding capacities of modern disks.  Second, many personal files are private in 
nature. Users lose control of their files once they are indexed by the server.  
Even with complicated security and access control mechanisms, they may be 
unwilling to release their files to remotely administered servers. 
 
Another approach is to have one or more dedicated indexing servers for a cluster 
of computers. For example, distributed search engines such as Harvest [4] set up 
one or more index servers to search within an intranet. With this scheme, a 
significant amount of network traffic is needed to fetch distributed files to the 
servers for index computing. More important, this scheme requires large, 

                                      
1 http://www.napster.com   
2 http://www.gnutella.com  
3 http://www.google.com  
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expensive, dedicated indexing servers, which are not feasible in a personal 
computing environment. 
 
In this section, we present Mingle, a secure distributed search system. Mingle is 
designed to meet the following requirements, which we consider fundamental to 
a distributed search system for personal computing and sensitive applications: 
 

• Searches should be fast.  For fast search, Mingle precomputes an 
inverted index of local files on each participating host. A query can be 
processed by the local host, or routed through the participating hosts 
using peer-to-peer communication to locate all of the desired data. 

 
• The system should scale. Since each participating host devotes 

computing resources for indexing, the Mingle scheme should scale well 
with the number of computers. Participating hosts communicate with each 
other only when there is a search request, greatly reducing network traffic. 

 
• The system should be secure. The Mingle security architecture focuses 

on preventing unauthorized release of information while allowing files to 
be maximally shared. Since search is presumably a frequent operation, 
we insist that the security mechanism be as convenient as possible for 
users.  Access control policy is expressed using an access-right mapping, 
a novel mechanism that extends a local file system's access control 
primitives to Mingle users in a uniform and convenient way.  This 
mechanism builds upon a single sign-on mechanism implemented in 
Mingle, which allows a user to perform authenticated search requests 
across many Mingle servers seamlessly. 

 
The remainder of this section is organized as follows. Section 2.1 summarizes 
related work.  Sections 2.2, 2.3, and 2.4 describe the Mingle prototype, including 
the novel security architecture based on access-right mapping. A preliminary 
performance evaluation of the Mingle prototype is in Section 2.5. 
 
2.1  Related Work 
 
Distributed search has been studied in the area of information retrieval 
[6][15][25][54], with emphasis on algorithms for server selection and result 
merging.  Mingle is different from these works in that our focus is on the system 
architecture and the security mechanisms to prevent data from access by 
unauthorized users. 
 
Peer-to-peer systems [44][51][47][58] have been designed to locate objects in 
self-organizing overlay networks. Such systems use hash based distributed 
indexing schemes to locate objects. The location of each object is stored at one 
or more nodes selected by a distributed hash function. Although hash functions 
can deterministically locate an object, they do not support keyword searching. 



 6

 
2.2 Overview of the Mingle System 
 
On each host, there is a Mingle server running as a daemon. Communication 
among servers is peer-to-peer. A user may issue a request from any host to any 
of the servers by launching a lightweight client program, which simply sends the 
request to the local server and waits for replies. If only a local reply is required, 
then the local server handles the request and sends back the reply. Otherwise, 
the server forwards the request to remote servers for further processing. 
 
Mingle clients issue separate requests for indexing and searching.  Only the 
owners of files can issue requests to index those files. Any Mingle user can issue 
a search request to any Mingle server, but they only receive information about 
files that they are authorized to see, as described in the next section. 
 
When a Mingle server daemon is started on a host for the first time, none of the 
files on that host are indexed. Users must make explicit requests to the Mingle 
server to index directory trees that they own. Thus Mingle is “opt-in”, in the sense 
that users on Mingle hosts must issue explicit requests before their data is 
indexed and made available to Mingle clients. 
 
Each Mingle server computes an inverted index of local files that have been 
indexed. The inverted index consists of: (1) a lexicon containing all of the words 
that appear in the files; and (2) an inverted file entry for each word, which stores 
a list of pointers to the occurrences of that word in the files.  To locate a given 
word, only its inverted file entry needs to be traversed, allowing fast queries. The 
detailed design and data structures of the inverted index in Mingle are discussed 
in Section 2.4.1. 
 
In many cases, a user may wish to search all hosts in a Mingle cluster without 
specifying host identities. To enable this, we establish a master server, which is a 
normal Mingle server that maintains the list of host names inside the cluster. 
Upon reception of a user request that needs to be routed through the cluster, the 
local server first fetches the host list from the master server, and then forwards 
the request to each remote host in the list individually. 
 
While the server is implemented as a daemon, the client program is a lightweight 
program that is launched only when needed. An alternative design is for each 
user to run their own stand-alone server that they interact with via the command 
line. This approach would lead to multiple server processes running 
simultaneously on the same computer, leading to a large overhead.  By 
implementing a separate lightweight client program, we build one index table and 
enable multiple users on the same host to share a single Mingle server. 
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2.3 Mingle Security Architecture 
 
The Mingle security architecture focuses on preventing unauthorized release of 
information while allowing files to be shared among different types of users.  Both 
the local users who have accounts on the Mingle host and remote users who do 
not have accounts should be able to participate in Mingle. Sensitive files can be 
accessed only by authorized users, while public files can be searched by even 
anonymous users. 
 
Existing mechanisms are deficient in terms of both flexibility and user 
convenience.  Mingle users might belong to different organizations and not have 
accounts on every machine. In this case, file system access controls on the 
Mingle hosts are not flexible enough to separate remote visitors into different 
classes of trustworthiness.  Further, search is a stateless request involving one 
simple command. Supplying passwords with each request is not acceptable. 
 
The design of the Mingle security architecture is guided by the following three 
principles: 
 

• File owners decide whom to trust.  We cannot expect every Mingle user 
to trust the same set of people. We must let file owners decide who is 
allowed to access their files. 

 
• Authorization is flexible and convenient. Because some files are more 

sensitive than others and some people are more trustworthy than others, 
file owners must be able to specify access rights for different users on 
each single file conveniently. 

 
• Authentication has small overhead. Since “search” is a stateless 

operation for everyday usage, we require the user authentication 
mechanism to be as lightweight as possible while providing reasonable 
level of security. 

 
In the following, we present the details of the Mingle security architecture. We 
begin by describing the authorization mechanism, which addresses the first and 
second principles. We then discuss the user authentication mechanism, which 
addresses the third design principle.  We close this subsection with a discussion 
of possible malicious attacks against Mingle. 
 
2.3.1 Authorization 
 
A straightforward way to handle access control is to maintain an access control 
list (ACL) for each file. Each item in the ACL specifies the permitted operations 
for each user. Although ACLs are flexible, they can be costly and prone to error 
since file owners must manually specify an ACL for each file. 
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We propose a new, more convenient approach that arises from the observation 
that the underlying file system in the Mingle host already enables access control 
on each file.  By granting a user (or group) “read” permission to a file, the file 
owner implicitly allows that user (or group) to search the file as well. However, 
the access control schemes in the file system are only applicable to local users 
who have accounts on the same computer. 
 
To extend the file system access control to a remote user, we introduce the idea 
of access-right mapping. For a file owner with local account name A, a Mingle 
user with Mingle ID U (see Section 2.3.2) can be mapped to a search protection 
domain (SPD) that consists of one or more local users or user groups: 
 
SPDA(U) =  {userID1, userID2, …, groupID1, groupID2, …}, 
 
where userIDi is some local user account name, and groupIDi is some local 
group name.  
 
The meaning of the mapping is that Mingle user U has permission to search any 
local file owned by A and readable by one or more members of SPDA(U). 
 
The process of access-right mapping is performed by each file owner 
independently.  Thus, a Mingle user can be mapped to different SPDs by 
different file owners on the same host. Given the access-right mapping, the 
algorithm for access permission checking is simple, as shown below. 
 
// Return whether Mingle user U is allowed to search file F 
bool is_search_permitted(filename F, mingle_user U)  { 
 
    // Get the file owner of F 
    O = get_file_owner(F);  
 
    // Get the SPD of U with respect to the file owner O  
    SPD = O.get_SPD(U); 
 
    // Check if any member in SPD is allowed to read F 
    foreach id in SPD { 
        if F is readable by id { 
            return true;  
        } 
    } 
 
    return false; 
} 
 
The access-right mapping preserves the file system access control semantics. It 
greatly simplifies the access control specification, while giving file owners full 
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control over their data. For example, each Unix file has 9 mode bits associated 
with it. These mode bits specify whether the file owner, specific group of users, 
and everyone else can read, write or execute the file.  In many cases, a file 
owner can map a friendly remote Mingle user to an SPD that consists of only the 
owner account or a “guest” account, allowing file owners to specify access 
permissions to most of their files conveniently. For the small number of files that 
need fine-grained access control, file owners can define a user group for each 
file and map Mingle users to the corresponding user groups.  In particular, in 
order to allow anonymous Mingle users to search shared public files, a file owner 
can define a special user group for public files and map any anonymous user to 
that group. 
 
2.3.2  User Authentication 
 
In Mingle, each request to index or search files on a host must be authenticated 
by that host.  Since a Mingle user might not have accounts on every host, or 
might have different account names on different hosts, each Mingle user is 
assigned a unique global Mingle ID (a text string) that identifies the user to 
Mingle servers in a uniform way. A Mingle user without a Mingle ID is regarded 
as an anonymous Mingle user and can search only public files. 
 
A Mingle ID is assigned to a user via a registration process that she executes 
once.  In this registration process, the user selects and inputs a Mingle ID and 
password to her lightweight client, which conveys these inputs to the local Mingle 
server.  The local Mingle server sends this pair to the master server for this 
Mingle cluster, using an encrypted channel (e.g., encrypted under the public key 
of the master server).  The master server confirms that this Mingle ID has not 
previously been registered.  If so, it generates a public signing key pair (e.g., 
[46]) for this Mingle ID, and saves the Mingle ID and associated password and 
key pair.  Upon successful return, the user can convey her Mingle ID to other 
users in whatever way she wishes, so that these users can create access-right 
mappings (see Section 2.3.1) for this Mingle ID on other machines, as they 
choose.  An alternative is to use the public key itself, or its hash, as the user’s 
Mingle ID, and then to rely on an external certification infrastructure to convey the 
identity of the owner of this Mingle ID to others. 
 
This user can then execute distributed searches using Mingle from any computer 
running a Mingle server as follows.  The user enters her Mingle ID, password, 
and search keyword into the Mingle client, which conveys these to the local 
Mingle server.  The local Mingle server executes a protocol with the master 
server to retrieve the private key corresponding to this Mingle ID (using the 
password to authenticate to the master server).  Once the private key is 
obtained, the local Mingle server can issue the query, containing the user's 
Mingle ID and signed using the retrieved private key, to the relevant remote 
Mingle servers.  Either a certificate binding the Mingle ID to the public verification 
key can be sent along with this request, or else the remote Mingle server can use 
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the contained Mingle ID to retrieve the corresponding public key from the master 
server.  Once it has the appropriate public key, it can verify the signature. 
 
There are numerous opportunities to use caching to eliminate steps in the above 
description and thereby improve the user experience. Specifically, the user's 
local Mingle server can temporarily cache the user's private key for use in 
subsequent searches, which eliminates the need for the user to re-enter her 
Mingle ID or password. Moreover, a remote Mingle server can temporarily cache 
the public key of this Mingle ID, so that it need not contact the master server 
again upon receiving another search query bearing this Mingle ID.  Of course, 
this caching also introduces windows of vulnerability: e.g., if the user's public key 
is revoked due to the compromise of the corresponding private key, this may go 
unnoticed by a remote Mingle server that is caching the public key.  It is therefore 
necessary to tune this caching to best balance performance, user experience, 
and security.  Such tradeoffs are common in public key infrastructures (e.g., 
[30]). 
 
A benefit of this architecture is the fact that the user's password and private key 
are exposed only on machines where the user enters her password (and on the 
master server).  Moreover, the protocol by which the user's machine retrieves the 
user's private key can be constructed to achieve strong security properties (e.g., 
see [40]), notably that the protocol messages themselves do not leak information 
that would permit an eavesdropping adversary to conduct a “dictionary attack” 
against the user's password [37][26].  As a result, dictionary attacks are limited to 
online guesses sent to the master server, which the server can detect and stop.  
The primary vulnerability of this approach is the master server itself: if 
penetrated, the master server will leak all users’ private keys.  This risk can be 
mitigated by distributing the master server in a way that requires multiple master 
servers to be compromised to disclose sensitive data (e.g., [14]), though we have 
not implemented this approach in the present system. 
 
We view the above approach to user authentication and single sign-on in Mingle 
as an interim solution suitable for Mingle deployments in user populations lacking 
a unified authentication infrastructure.  For user populations with an existing 
authentication and single sign-on solution, ideally Mingle would exploit that 
solution for its user authentication needs. 
 
2.3.3 Other Vulnerabilities 
 
We briefly outline types of malicious attacks that Mingle is vulnerable to and 
discuss possible ways to cope with them.  Completely addressing these attacks 
is beyond the scope of this seedling project. 
 
Mingle query responses are sent from remote servers unencrypted, and thus 
Mingle is vulnerable to information release and modification attacks. Moreover, 
without strong authentication of servers, a malicious Mingle server can provide 
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fraudulent information.  If data privacy and integrity is a major concern, then 
further cryptographic protocols can be used to authenticate servers as well as 
clients, and to set up session keys for message encryption. 
 
A potential vulnerability to timing attacks exists within Mingle, due to its 
precomputation of an inverted index to permit fast searching.  Specifically, the 
processing time for a Mingle server to compute its response is a function of the 
number of files actually containing the search item, not only those to which the 
client has search access.  As a result, a client that can accurately measure the 
duration required for a Mingle daemon to respond to its search request can learn 
some information about the number of files on that host that contain the search 
item, even if the client has search access to very few of them.  Randomizing 
search latencies could mitigate this threat. In addition, a filter could be applied to 
check user permission before searching through the inverted index. We note, 
however, that this threat applies only to files that their owners have volunteered 
to be indexed by Mingle. 
 
Finally, like most other distributed systems, Mingle is vulnerable to various forms 
of denial-of-service attacks. 
 
2.4 Mingle Implementation 
 
In this section, we discuss the implementation of the Mingle server and client. We 
first describe the design of the inverted index in Mingle. Then we present the 
Mingle server architecture and explain the interactions among various system 
components. 
 
2.4.1 Inverted Index 
 
Indexing is a mechanism for quickly locating a given word in a collection of files. 
There are three common data structures for file indexing: inverted index, 
signature files and bitmaps (see [56]).  An inverted index is the most natural 
indexing method, with each entry consisting of a word and its occurrences in the 
files.  A signature file is a probabilistic method for file indexing, where each file 
has a signature. Every indexed word in a file is used to generate several hash 
values.  The bits of the signature corresponding to those hash values are set to 
one, indicating the occurrences of the word. A bitmap stores a bit vector for every 
word. Each bit in the bit vector corresponds to a file and is set to one if the word 
appears in that file. Compared with the inverted index, signature files can cause 
false matches, resulting in either longer search times or large signature files.  
Bitmaps have relatively short search times, but require extravagant storage 
space and the update is slow when files are updated frequently.  In Mingle, we 
decided to choose the inverted index because of its relatively small cost of 
storage and low search latency. 
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However, a fine-grained inverted index is still space consuming. A fine-grained 
inverted index containing all occurrences of every word can consume 50% to 
300% of the original text size, which may not be acceptable.  Therefore, Mingle 
computes a coarse-grained inverted index.  Each index entry for a word contains 
only the first occurrence of that word in every file. A hash table is used to quickly 
locate the index entry for a word. 
 
Before a file is indexed, it is assigned a document ID. Then the file is scanned 
word by word to build the index table incrementally.  All of the words are 
converted to lower case.  User specified stop words (defined by a configuration 
file) are removed to reduce index size.  For each word in the index table, if it 
appears multiple times in the file, then only the position of the first occurrence of 
that word will be recorded in the corresponding index entry.  Below is an example 
of inverted index table in Mingle. Once the index table is built, it can be updated 
regularly to remove out of date entries. 
 
 
Word ID Word (Document ID; First occurrence) 
1 movie (1;6), (4; 228) 
2 day (2;8), (3;57), (4;200) 
3 event (1;37), (3;22) 
 
 
A query can consist of one or more keywords. With a coarse-grained inverted 
index table, queries are resolved in two steps. First, the corresponding index 
entries of the queried keywords are searched to return a list of files that match 
the query.  Then, each individual file in the list is scanned to return all the exact 
occurrences of the queried keywords.  There is a tradeoff between index 
granularity and search latency.  Compared with the fine-grained inverted index, a 
coarse-grained index table requires longer search latency since the second step 
will be otherwise unnecessary.  However, the extra latency is typically small, as 
is shown in Section 2.5. 
 
2.4.2 Mingle Server Architecture 
 
The Mingle server is implemented as a single process.  The file descriptor 
manager uses the select function to multiplex concurrent requests. After a 
request has been received by the receiver, it is parsed by the request manager, 
which determines the request type and forwards the request to the appropriate 
components for further processing.  The major components that process a user 
request are the file indexer, query processor, and security manager. The file 
indexer accesses files from the local disk and builds up an inverted index table in 
disk.  For performance optimization, the file indexer maintains a cache in memory 
for frequently accessed terms and their indices.  The query processor processes 
user queries, including advanced query options based on the index table built by 
the file indexer. The security manager performs access control. 
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Both the Mingle server and the client program are implemented in C++.  The 
request signing and signature verification use the RSA algorithm [46], which is 
implemented by the Crypto++ library (version 4.2)4. The communications among 
servers are via TCP connections, while the server and the client program 
communicate via Unix IPC.   
 
2.5 Performance Evaluation 
 
In this section, we present the performance evaluation of Mingle. We have 
conducted three sets of experiments to answer the following three questions: (1) 
What is the cost of index and search⎯the two major operations in Mingle? (2) 
What is the impact of our security mechanism on performance? (3) What is the 
scalability of Mingle?  The first and the second sets of experiments are 
conducted on PIII 550MHz machines with 128 MB of RAM. The last set of 
experiments is run on the cluster of computers (PIII 550MHz) in a 10BaseT 
Ethernet LAN. Each data point in the figures is the average of ten runs.  
 
2.5.1 What is the Cost of Index and Search? 
 
Since only text files will be indexed, we have downloaded the RFC5 and the 
Internet Drafts6 repositories to test the index performance. We vary the text size 
to be indexed. The figures below plot the index latency and the generated index 
table size. We observe that both costs increase linearly with the text size. It takes 
about 30 minutes to index 200 MB of text (about 9 seconds per 1 MB). Usually, 
only a portion of the data on a disk will be text. With the current index speed, we 
can index a local disk regularly during machine idle time. The generated index 
table size is about 15% of the original text size. 
 

 

                                      
4 http://www.eskimo.com/~weidai/cryptlib.html  
5 http://www.rfc-editor.org  
6 http://www.ietf.org/ID.html  
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With the pre-computed index table, we then examine the search latency on the 
local server without using our security mechanisms. We vary the indexed text 
size and the number of keywords in a query. The figure below plots the query 
lookup latency in the case of cache hits, when the required items in the index 
table are already in memory. Overall, the search latency is on the order of 
milliseconds and seconds, which is fast.  For example, in 200 MB text, it takes 
about 250 ms to find answers to a two-keyword query, while it takes as long as 
15 seconds to get the same results using grep.  If the keywords in a query do 
not exist in the indexed text, the search latency is less than 1ms regardless of the 
indexed text size. 
 

 
 
 
2.5.2 What is the Impact of Security on Performance? 
 
In this section, we measure the impact of the Mingle security mechanism on 
performance.  Since cryptographic computation is often expensive, our main 
concern is the latency penalty of cryptographic operations for remote user 
authentication.  We evaluate the cost of request signing and signature verification 
by measuring the time spent in each step of request processing. 
 
We conducted our experiments on two machines serving as the local server and 
the remote server respectively in the same LAN.  Since the security penalty does 
not depend on request type, we choose a 3-keyword search request as our 
example and fix the indexed text size to be 100 MB. We use 1024-bit RSA keys. 
The table below includes the processing steps we are interested in.  The 
processing consists of two stages: First, the request is parsed and signed at the 
local server, and forwarded to the remote server. Second, the remote server 
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verifies the signature and generates the reply by query lookup. The “Total” 
column corresponds to the time elapsed between the arrival of the request and 
sending the reply to the client program by the local server.  The “Networking” 
column corresponds to the latency spent in forwarding the request and getting 
the reply from the remote server. For each step, we show the mean and the 
standard deviation of latency in milliseconds, as well as the percentage of total 
latency. 
 
 
 Total Parsing Networking Lookup Signing Sig Verify 
Mean 313590 940 6010 279530 25710 1400
Std dev 2615 15 643 2613 44 25
Percentage  100.0%  0.3%  1.9%  89.1%  8.2%  0.5%
 
 
We can see from the above table that most of the processing latency is spent on 
query lookup. Although request signing is also expensive, it is not the 
performance bottleneck. Compared with signing, signature verification is fast. 
Note that the standard deviation is small for all steps except networking latency, 
which has a relatively larger variation due to the network instability.  In summary, 
our security mechanism has little impact on overall search performance. 
 
2.5.3 What is the Scalability of Mingle? 
 
In this section, we examine whether Mingle is able to scale with an increasing 
number of hosts. We consider scenarios with and without our security 
mechanism.  We run the Mingle server on every host in a cluster of up to 23 
computers. Each server has a precomputed index table of 100 MB text. 
 
The figure below plots the average search latency and the standard deviations 
without security checking by varying the number of participating hosts.  We can 
see that the performance degradation is not constant with the increasing number 
of Mingle servers. The search latency increases most when the number of hosts 
in Mingle increases from one to three.  The increased latency is due to network 
communication and remote processing, which do not happen in the single server 
case. When we further increase the number of participating hosts, the 
performance degradation becomes smaller. The reason is that although the 
network communication time is increased, the remote processing can be done in 
parallel on different servers. We note that when the number of hosts is greater 
than 21, the search latency with security checking is even lower than that without 
security checking. This is because the security overhead is small compared with 
the overall search latency. The lower search latency with security checking is due 
to the large variance of network latencies when there are more hosts in the 
cluster. Overall, our measurements suggest that Mingle is able to scale with 
increasing number of hosts. 
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2.6 Discussion 
 
We have developed Mingle to help authorized users efficiently locate their data in 
distributed computing environments.  Mingle hosts precompute an inverted index 
of local files, searching among each other in a peer-to-peer way.  The Mingle 
security architecture consists of authorization and authentication mechanisms. 
One of the major benefits of our security mechanism is user convenience. For 
authorization, we introduce an access-right mapping that allows data owners to 
conveniently specify access permissions.  This is supported using a user 
authentication mechanism that permits a form of single sign-on. 
 
Future work includes expanding Mingle to larger networks via hierarchically 
organizing clusters; considering schemes for encrypting and replicating host 
indexes; and better understanding Mingle's vulnerability to attacks such as timing 
attacks. 
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3 Byzantine-tolerant erasure-coded storage 
 
Survivable storage systems spread data redundantly across a set of distributed 
storage-nodes in an effort to ensure its availability despite the failure or 
compromise of storage-nodes. Such systems require some protocol to maintain 
data consistency and liveness in the presence of failures and concurrency. 
 
This section presents a new consistency protocol that operates in an 
asynchronous environment and tolerates Byzantine failures of clients and 
storage-nodes. The protocol supports a hybrid failure model in which up to t 
storage-nodes may fail: b ≤ t of these failures can be Byzantine and the 
remainder can be crash.  The protocol requires at least 2t+2b+1 storage-nodes. 
The protocol also supports use of m-of-n erasure codes (i.e., m-of-n fragments 
are needed to reconstruct the data), which usually require less network 
bandwidth (and storage space) than full replication [55][57]. 
 
Briefly, the protocol works as follows.  To perform a write, a client determines the 
current logical time and then writes time-stamped fragments to at least a 
threshold quorum of storage-nodes. Storage-nodes keep all versions of 
fragments they are sent until garbage collection frees them. To perform a read, a 
client fetches the latest fragment versions from a threshold quorum of storage-
nodes and determines whether they comprise a completed write; usually, they 
do.  If they do not, additional and historical fragments are fetched, and repair may 
be performed, until a completed write is observed. 
 
The protocol gains efficiency from five features.   First, the space-efficiency of m-
of-n erasure codes can be substantial, reducing communication overheads 
significantly.  Second, most read operations complete in a single round trip: 
reads that observe write concurrency or failures (of storage-nodes or a client 
write) may incur additional work.  Most studies of distributed storage systems 
(e.g., [3][38]) indicate that concurrency is uncommon (i.e., writer-writer and 
writer-reader sharing occurs in well under 1% of operations). Failures, although 
tolerated, ought to be rare. Third, incomplete writes are replaced by subsequent 
writes or reads (that perform repair), thus preventing future reads from incurring 
any additional cost; when subsequent writes do the fixing, additional overheads 
are never incurred.  Fourth, most protocol processing is performed by clients, 
increasing scalability via the well-known principle of shifting work from servers to 
clients [22].  Fifth, the protocol only requires the use of cryptographic hashes, 
rather than more expensive cryptographic primitives (e.g., digital signatures). 
 
This protocol is timely because many research storage systems are investigating 
practical means of achieving high fault tolerance and scalability.  Examples 
include the FARSITE project at Microsoft Research [1], the Federated Array of 
Bricks project at HP Labs [16], and the OceanStore project at Berkeley [28].  
Some of these projects (e.g., [1][28]) use Castro's Byzantine Fault Tolerant (BFT) 
library [7]. Many of these projects (e.g., [16][28]) are considering the use of 
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erasure codes for data storage. Our protocol for Byzantine-tolerant erasure-
coded storage can provide an efficient, scalable, highly fault-tolerant foundation 
for such storage systems. 
 
3.1 Background 
 
In a decentralized storage system, multiple storage-nodes work together to 
implement a service for read-write storage.  To write a data-item D, Client A 
issues write requests to multiple storage-nodes. To read D, Client B issues read 
requests to an overlapping subset of storage-nodes. This scheme provides 
access to data-items even when subsets of the storage-nodes have failed. One 
difficulty created by this architecture is the need for a consistent view, across 
storage-nodes, of the most recent update. Without such consistency, data loss is 
possible or even likely. 
 
A common data distribution scheme used in such systems is replication, in which 
a writer stores a replica of the new data-item value at each storage-node to 
which it sends a write request.  Since each storage-node has a complete 
instance of the data-item, the main difficulty is identifying and retaining the most 
recent instance.  Alternately, more space-efficient erasure coding schemes can 
be used to reduce network load and storage consumption.  With erasure coding 
schemes, reads require fragments from multiple servers.  Moreover, to decode 
the data-item, the set of fragments read must correspond to the same write 
operation. 
 
To provide reasonable semantics, storage systems must guarantee that readers 
see consistent data-item values.  Specifically, the linearizability of operations is 
desirable for a shared storage system.  Our protocol tolerates Byzantine faults of 
any number of clients and a limited number of storage nodes while implementing 
linearizable [21] and wait-free [19] read-write objects. Linearizability is adapted 
appropriately for Byzantine clients,7 and wait-freedom is as in the model of 
Jayanti et al. [23]. 
 
As discussed in Section 1, most prior systems implementing Byzantine fault-
tolerant services adopt the replicated state machine approach [48], whereby all 
operations are processed by server replicas in the same order (atomic 
broadcast). While this approach supports a linearizable, Byzantine fault-tolerant 
implementation of any deterministic object, such an approach cannot be wait-free 
[19][23].  Instead, such systems achieve liveness only under stronger timing 
assumptions, such as synchrony (e.g., [11][42][50]) or partial synchrony [12] 
(e.g., [7][24][45]), or probabilistically (e.g., [5]).   An alternative is Byzantine 
quorum systems [31], from which our protocol inherit techniques (i.e., our 
protocol can be considered a Byzantine quorum system that uses the threshold 

                                      
7 Specifically, return values of reads by Byzantine clients are ignored, as are begin times of writes 
by Byzantine clients. 
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quorum construction). Protocols for supporting a linearizable implementation of 
any deterministic object using Byzantine quorums have been developed (e.g., 
[8]), but also necessarily forsake wait-freedom to do so. Additionally, most 
protocols using Byzantine quorum systems utilize digital signatures, which are 
computationally expensive. 
 
Byzantine fault-tolerant protocols for implementing read-write objects using 
quorums are described in [20][32][35][41].    Of these related quorum systems, 
only Martin et al. [35] achieve linearizability in our fault model, and this work is 
also closest to ours in that it uses a type of versioning. In our protocol, a reader 
may retrieve fragments for several versions of the data-item in the course of 
identifying the return value of a read.  Similarly, readers in [35] “listen” for 
updates (versions) from storage-nodes until a complete write is observed. 
Conceptually, our approach differs by clients reading past versions, versus 
listening for future versions broadcast by servers.   In our fault model, especially 
in consideration of faulty clients, our protocol has several advantages. First, our 
protocol works for erasure-coded data, whereas extending [35] to erasure coded 
data appears nontrivial. Second, ours provides better message efficiency: [35] 
involves a Θ(N2) message exchange among the N servers per write (versus no 
server-to-server exchange in our case) over and above otherwise comparable 
(and linear in N) message costs. Third, ours requires less computation, in that 
[35] requires digital signatures by clients, which in practice is two orders of 
magnitude more costly than the cryptographic transforms we employ.  
Advantages of [35] are that it tolerates a higher fraction of faulty servers than our 
protocol, and does not require servers to store a potentially unbounded number 
of data-item versions. Our prior analysis of versioning storage, however, 
suggests that the latter is a non-issue in practice [52], and even under attack this 
can be managed using a garbage collection mechanism we discuss in Section 
3.5.3. 
 
There exists much prior work (e.g., [2][20][36]) that combines erasure coded data 
(e.g., [43][49]) with quorum systems to improve the confidentiality and/or integrity 
of data along with its availability.  However, these systems do not provide 
consistency (i.e., an external synchronization mechanism is required) and do not 
cope with Byzantine clients. 
 
We develop our protocol for a hybrid failure model of storage-nodes (i.e., a mix of 
crash and Byzantine failures).  The concept of hybrid failure models was 
introduced by Thambidurai and Park [53].  Other protocols have been developed 
for such failure models: e.g., Garay and Perry [17] consider reliable broadcast, 
consensus and clock synchronization in the hybrid failure model and Malkhi, 
Reiter and Wool [33] consider the resilience of Byzantine quorum systems to 
crash faults. 
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3.2 System Model 
 
We describe the system infrastructure in terms of clients and storage-nodes. 
There are N storage-nodes and an arbitrary number of clients in the system. 
 
A client or storage-node is correct in an execution if it satisfies its specification 
throughout the execution.  A client or storage-node that deviates from its 
specification fails.  We assume a hybrid failure model for storage-nodes. Up to t 
storage-nodes may fail, b ≤ t of which may be Byzantine faults [29]; the 
remainder are assumed to crash. We make no assumptions about the behavior 
of Byzantine storage-nodes and Byzantine clients (e.g., we assume that 
Byzantine storage-nodes can collude with each other and with any Byzantine 
clients).  A client or storage-node that does not exhibit a Byzantine failure (it is 
either correct or crashes) is benign. 
 
The protocol tolerates crash and Byzantine clients.  As in any practical storage 
system, an authorized Byzantine client can write arbitrary values to storage, 
which affects the value of the data, but not its consistency.  We assume that 
Byzantine clients and storage-nodes are computationally bounded so that we can 
benefit from cryptographic primitives. 
 
We assume an asynchronous model of time (i.e., we make no assumptions 
about message transmission delays or the execution rates of clients and storage-
nodes, except that it is non-zero).  We assume that communication between a 
client and a storage-node is point-to-point, reliable, and authenticated: a correct 
storage-node (client) receives a message from a correct client (storage-node) if 
and only if that client (storage-node) sent it to it. 
 
There are two types of operations in the protocol ⎯ read operations and write 
operations ⎯ both of which operate on data-items.  Clients perform read/write 
operations that issue multiple read/write requests to storage-nodes.  A read/write 
request operates on a data-fragment.  A data-item is encoded into data-
fragments.  Clients may encode data-items in an erasure-tolerant manner; thus 
the distinction between data-item and data-fragment.  Requests are executed by 
storage-nodes; a correct storage-node that executes a write request hosts that 
write operation. 
 
Storage-nodes provide fine-grained versioning; correct storage-nodes host a 
version of the data-fragment for each write request they execute. There is a well 
known zero time, 0, and null value, ⊥, which storage-nodes can return in 
response to read requests.  Implicitly, all stored data is initialized to ⊥ at time 0. 
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3.3 Protocol 
 
This section describes our Byzantine fault-tolerant consistency protocol that 
efficiently supports erasure-coded data-items by taking advantage of versioning 
storage-nodes.  It presents the mechanisms employed to encode and decode 
data, and to protect data integrity from Byzantine storage-nodes and clients. It 
then describes the protocol in pseudo-code form. Finally, it develops constraints 
on protocol parameters that provide safety and liveness of the protocol. 
 
3.3.1 Overview 
 
At a high level, the protocol proceeds as follows.  Logical timestamps are used to 
totally order all write operations and to identify data-fragments pertaining to the 
same write operation across the set of storage-nodes. For each write, a logical 
timestamp is constructed by the client that is guaranteed to be unique and 
greater than that of the latest complete write (the complete write with the highest 
timestamp).  This is accomplished by querying storage-nodes for the greatest 
timestamp they host, and then incrementing the greatest response. In order to 
verify the integrity of the data, a hash that can verify data-fragment correctness is 
appended to the logical timestamp. 
 
To perform a read operation, clients issue read requests to a subset of storage-
nodes.  Once at least a read quorum of storage-nodes reply, the client identifies 
the candidate⎯the response with the greatest logical timestamp. The set of read 
responses that share the timestamp of the candidate comprise the candidate set. 
The read operation classifies the candidate as complete, repairable, or 
incomplete.  If the candidate is classified as complete, the data-fragments, 
timestamp, and return value are validated.  If validation is successful, the value of 
the candidate is returned and the read operation is complete; otherwise, the 
candidate is reclassified as incomplete.  If the candidate is classified as 
repairable, it is repaired by writing data-fragments back to the original set of 
storage-nodes (note, in [32], repair, for replicas, is referred to as “write-back”).  
Prior to performing repair, data-fragments are validated in the same manner as 
for a complete candidate.  If the candidate is classified as incomplete, the 
candidate is discarded, previous data-fragment versions are requested, and 
classification begins anew. All candidates fall into one of the three classifications, 
even those corresponding to concurrent or failed write operations. 
 
3.3.2 Mechanisms 
 
Several mechanisms are used in our protocol to achieve linearizability in the 
presence of Byzantine faults. 
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3.3.2.1 Erasure codes 
 
In an erasure coding scheme, N data-fragments are generated during a write 
(one for each storage-node), and any m of those data-fragments can be used to 
decode the original data-item.  Any m of the data-fragments can deterministically 
generate the other N−m data-fragments.  We use a systematic information 
dispersal algorithm [43], which stripes the data-item across the first m data-
fragments and generates erasure-coded data-fragments for the remainder. Other 
threshold erasure codes (e.g., secret sharing [49] and short secret sharing [27]) 
work as well. 
 
3.3.2.2 Data-fragment integrity 
 
Byzantine storage-nodes can corrupt their data-fragments.  As such, it must be 
possible to detect and mask up to b storage-node integrity faults. 

3.3.2.2.1 Cross checksums 
Cross checksums [18] are used to detect corrupt data-fragments. A 
cryptographic hash of each data-fragment is computed.   The set of N hashes are 
concatenated to form the cross checksum of the data-item.  The cross checksum 
is stored with each data-fragment (i.e., it is replicated N times).  Cross 
checksums enable read operations to detect data-fragments that have been 
modified by storage-nodes. 

3.3.2.2.2 Write operation integrity 
Mechanisms are required to prevent Byzantine clients from performing a write 
operation that lacks integrity. If a Byzantine client generates random data-
fragments (rather than erasure coding a data-item correctly), then each of the N-
choose-m permutations of data-fragments could “recover” a distinct data-item.  
Additionally, a Byzantine client could partition the set of N data-fragments into 
subsets that each decode to a distinct data-item. These attacks are similar to 
poisonous writes for replication as described by Martin et al. [35]. To protect 
against Byzantine clients, the protocol must ensure that read operations only 
return values that are written correctly (i.e., that are single-valued).  To achieve 
this, the cross checksum mechanism is extended in three ways: validating 
timestamps, storage-node verification, and validated cross checksums. 

3.3.2.2.3 Validating timestamps 
To ensure that only a single set of data-fragments can be written at any logical 
time, the hash of the cross checksum is placed in the low order bits of the logical 
timestamp.  Note, the hash is used for space-efficiency; instead, the entire cross 
checksum could be placed in the low bits of the timestamp. 
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3.3.2.2.4 Storage-node verification 
On a write, each storage-node verifies its data-fragment against its hash in the 
cross checksum.  The storage-node also verifies the cross checksum against the 
hash in the timestamp. A correct storage-node only executes write requests for 
which both checks pass.  Thus, a Byzantine client cannot make a correct 
storage-node appear Byzantine.  It follows, that only Byzantine storage-nodes 
can return data-fragments that do not verify against the cross checksum. 

3.3.2.2.5 Validated cross checksums 
Storage-node verification combined with a validating timestamp ensures that the 
data-fragments considered by a read operation were written by the client (as 
opposed to being fabricated by Byzantine storage-nodes). To ensure that the 
client that performed the write operation acted correctly, the reader must validate 
the cross checksum.  To validate the cross checksum, all N data-fragments are 
required.  Given any m data-fragments, the full set of N data-fragments a correct 
client should have written can be generated. The “correct” cross checksum can 
then be computed from the regenerated set of data-fragments. If the generated 
cross checksum does not match the verified cross checksum, then a Byzantine 
client performed the write operation.  Only a single-valued write operation can 
generate a cross checksum that verifies against the validating timestamp. 
Instead of using validated cross checksums, our protocol could use verifiable 
secret sharing [9][13]. Verifiable secret sharing enables storage-nodes to validate 
that the client acted correctly on each write request (instead of validating the 
data-item on each read operation). 
 
3.3.3 Pseudocode 
 
The pseudocode for the protocol is shown below. The symbol LT denotes logical 
time and LTC denotes the logical time of the candidate.  D1, …,DN denotes the N 
data-fragments; likewise, S1, …,SN  denotes the set of N storage-nodes.  In the 
pseudocode, the binary operator “|” denotes string concatenation.  Simplicity and 
clarity in the presentation of the pseudo-code were chosen over obvious 
optimizations that could be used in an actual implementation. 
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1. WRITE (Data):  
2.   TIME := READ_TIMESTAMP() 
3.   D1, …,DN := ENCODE(Data) 
4.   CC :=  
         MAKE_CROSS_CHECKSUM(D1,…,DN) 
5.   LT := MAKE_TIMESTAMP(TIME, CC) 
6.   DO_WRITE(D1, …,DN, LT, CC) 
 
7. READ_TIMESTAMP(): 
8.   forall Si ∈ { S1, …,SN } 
9.     SEND(Si, TIME_REQUEST) 
10.   ResponseSet := ∅ 
11.   repeat 
12.     ResponseSet := 
            ResponseSet ∪  
            { RCV(StorageNode, 
                  TIME_RESPONSE) } 
13.   until (|ResponseSet| = N − t) 
14.   TIME :=  
          MAX[ResponseSet.LT.TIME] 
15.  RETURN (TIME) 
 
16. MAKE_CROSS_CHECKSUM(D1, …,DN): 
17.   forall Di ∈ D1, …,DN 
18.     Hi := HASH(Di) 
19.   CC := H1|…|HN 
20.   RETURN(CC) 
 
21. MAKE_TIMESTAMP(LTM, CC):  
22.   LT.TIME := LTM.TIME + 1 
23.   LT.Verifier := HASH(CC) 
24.   RETURN(LT) 
 
25. DO_WRITE(D1, …,DN, LT, CC): 
26.   forall Si ∈ { S1, …,SN } 
27.     SEND(Si, WRITE_REQUEST, 
            LT, Di, CC) 
28.   ResponseSet := ∅ 
29.   repeat 
        ResponseSet := 
          ResponseSet ∪  
            { RCV(StorageNode, 
                  WRITE_RESPONSE) } 
30.   until (|ResponseSet| = N − t) 
 
 

 

Write operation pseudocode 
 

1. READ(): 
2.   ResponseSet :=  
         DO_READ(READ_LATEST_REQUEST, ⊥) 
3.   loop 
4.     〈CandidateSet, LTC〉 := 
         CHOOSE_CANDIDATE(ResponseSet) 
5.     if (|CandidateSet| ≥ INCOMPLETE) 
6.       /* Complete or repairable 
            write found */ 
7.       D1, …,DN := 
           GENERATE_FRAGS(CandidateSet) 
8.       VCC := 
           MAKE_CROSS_CHECKSUM(D1,…,DN) 
9.       if (VCC = CandidateSet.CC) 
10.         /* Cross checksum is 
              validated */ 
11.         if (|CandidateSet|<COMPLETE) 
12.           /* Repair is necessary */ 
13.           DO_WRITE(D1,…,DN,LTC,VCC) 
 
14.         Data := DECODE(D1, …,DN) 
15.         RETURN ( 〈LTC, Data〉 ) 
 
16.     /* Incomplete or cross checksum 
           not validated, loop again */ 
17.     ResponseSet := 
         DO_READ(READ_PREV_REQUEST, LTC) 
 
18. DO_READ(READ_COMMAND, LT):  
19.   forall Si ∈ { S1, …,SN } 
20.     SEND(Si, READ_COMMAND, LT) 
21.   ResponseSet := ∅ 
22.   repeat 
23.     Resp := RCV(S, READ_RESPONSE) 
24.     if (VALIDATE(Resp.D, Resp.CC, 
                    Resp.LT, S) = TRUE) 
25.       ResponseSet := 
              ResponseSet ∪ { Resp } 
26.   until (|ResponseSet| = N − t) 
27.   RETURN(ResponseSet) 
 
28. VALIDATE (D, CC, LT, S): 
29.   if ((HASH(CC) ≠ LT.Verifier) OR 
         (HASH (D) ≠ CC[S])) 
30.     RETURN (FALSE) 
31.   RETURN (TRUE) 
 

Read operation pseudo-code 

 
 
3.3.3.1 Storage-node interface 
 
Storage-nodes offer interfaces to write a data-fragment at a specific logical time; 
to query the greatest logical time of a hosted data-fragment; to read the hosted 
data-fragment with the greatest logical time; and to read the hosted data-
fragment with the greatest logical time before some given logical time.  Given the 
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simplicity of the storage-node interface, storage-node pseudo-code has been 
omitted. 
 
3.3.3.2 Write operation 
 
The WRITE operation consists of determining the greatest logical timestamp, 
constructing write requests, and issuing the requests to the storage-nodes. First, 
a timestamp greater than, or equal to, that of the latest complete write must be 
determined.  Collecting N−t responses, on line 13 of READ_TIMESTAMP, 
ensures that the response set intersects a complete write at a correct storage-
node. Since the environment is asynchronous, a client can wait for no more than 
N−t responses. Fewer than N−t responses are actually required to observe the 
timestamp of the latest complete write, since a single correct response is 
sufficient. 
 
Next, the ENCODE function, on line 3 of WRITE, encodes the data-item into N 
data-fragments. The data-fragments are used to construct a cross checksum 
from the concatenation of the hash of each data-fragment (line 19). The function 
MAKE_TIMESTAMP, called on line 5, generates a logical timestamp to be used 
for the current write operation. This is done by incrementing the high order bits of 
the greatest observed logical timestamp from the ResponseSet (i.e., LT.TIME) 
and appending the Verifier.  The Verifier is just the hash of the cross checksum. 
 
Finally, write requests are issued to all storage-nodes. Each storage-node is sent 
a specific data-fragment, the logical timestamp, and the cross checksum. A 
storage-node validates the cross checksum with the verifier and validates the 
data-fragment with the cross checksum before executing a write request (i.e., 
storage-nodes call VALIDATE listed in the read operation pseudo-code). The 
write operation returns to the issuing client once N−t WRITE_RESPONSE 
messages are received (line 30 of DO_WRITE). 
 
3.3.3.3 Read operation 
 
The read operation iteratively identifies and classifies candidates, until a 
repairable or complete candidate is found. Once a repairable or complete 
candidate is found, the read operation validates its correctness and returns the 
data.  Note that the read operation returns a 〈timestamp, value〉 pair; in practice, 
a client only makes use of the value returned. 
 
The read operation begins by issuing READ_LATEST_REQUEST commands to 
all storage-nodes (via the DO_READ function). Each storage-node responds with 
the data-fragment, logical timestamp, and cross checksum corresponding to the 
greatest timestamp it has executed. 
 
The integrity of each response is individually validated through the VALIDATE 
function, called on line 24 of DO_READ.  This function checks the cross 



 26

checksum against the Verifier found in the logical timestamp and the data-
fragment against the appropriate hash in the cross checksum. 
 
Since, in an asynchronous system, slow storage-nodes cannot be differentiated 
from crashed storage-nodes, only N−t read responses can be collected (line 26 
of DO_READ). Since correct storage-nodes perform the same validation before 
executing write requests, the only responses that can fail the client's validation 
are those from Byzantine storage-nodes.  For every discarded Byzantine 
storage-node response, an additional response can be awaited. 
 
After sufficient responses have been received, a candidate for classification is 
chosen.  The function CHOOSE_CANDIDATE, called on line 4 of READ, 
determines the candidate timestamp, denoted LTC, which is the greatest 
timestamp found in the response set.  All data-fragments that share LTC are 
identified and returned as the candidate set.  At this point, the candidate set 
contains a set of validated data-fragments that share a common cross checksum 
and logical timestamp. 
 
Once a candidate has been chosen, it is classified as complete, repairable, or 
incomplete based on the size of the CandidateSet.  The rules for classifying a 
candidate as INCOMPLETE or COMPLETE are given in the following 
subsection. If the candidate is classified as incomplete, a 
READ_PREV_REQUEST message is sent to each storage-node with its 
timestamp.  Candidate classification begins again with the new response set. 
 
If the candidate is classified as either complete or repairable, the candidate set 
contains sufficient data-fragments written by the client to decode the original 
data-item.  To validate the observed write's integrity, the candidate set is used to 
generate a new set of data-fragments (line 7 of READ).  A validated cross 
checksum, VCC, is computed from the newly generated data-fragments. The 
validated cross checksum is compared to the cross checksum of the candidate 
set (line 9 of READ).  If the check fails, the candidate was written by a Byzantine 
client; the candidate is reclassified as incomplete and the read operation 
continues.  If the check succeeds, the candidate was written by a correct client 
and the read enters its final phase. Note that this check either succeeds or fails 
for all correct clients regardless of which storage-nodes are represented within 
the candidate set. 
 
If necessary, repair is performed: write requests are issued with the generated 
data-fragments, the validated cross checksum, and the logical timestamp (line 13 
of READ). Storage-nodes not currently hosting the write execute the write at the 
given logical time; those already hosting the write are safe to ignore it. Finally, 
the function DECODE, on line 14 of READ, decodes m data-fragments, returning 
the data-item. 
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It should be noted that, even after a write completes, it may be classified as 
repairable by a subsequent read, but it will never be classified as incomplete. For 
example, this could occur if the read set (of N−t storage-nodes) does not fully 
encompass the write set (of N−t storage-nodes). 
 
3.4 Protocol constraints 
 
The symbol Q denotes the number of benign storage-nodes that must execute 
write responses for a write operation to be complete.  Note that since threshold 
quorums are used, Q is a scalar value. To ensure that linearizability and liveness 
are achieved, Q and N must be constrained with regard to b, t, and each other.  
As well, the parameter m, used in DECODE, must be constrained. 
 
3.4.1 Write termination 
 
To ensure write operations are able to complete in an asynchronous 
environment, 
 

Q ≤ N − t − b 
 
Since slow storage-nodes cannot be differentiated from crashed storage-nodes, 
only N − t responses can be awaited.  As well, b responses received may be 
from Byzantine storage-nodes. 
 
3.4.2 Read classification 
 
To classify a candidate as COMPLETE, a candidate set of at least Q benign 
storage-nodes must be observed.  In the worst case, at most b members of the 
candidate set may be Byzantine, thus, 
 

|CandidateSet| − b ≥ Q ⇒ COMPLETE 
 
To classify a candidate as INCOMPLETE a client must determine that a 
complete write does not exist in the system (i.e., fewer than Q benign storage-
nodes host the write).  For this to be the case, the client must have queried all 
possible storage-nodes (N − t), and must assume that nodes not queried host the 
candidate in consideration. So, 
 

|CandidateSet| + t < Q ⇒ INCOMPLETE 
 
3.4.3 Real repairable candidates 
 
To ensure that Byzantine storage-nodes cannot fabricate a repairable candidate, 
a candidate set of size b must be classifiable as incomplete.  Substituting b into 
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|CandidateSet| + t < Q ⇒ INCOMPLETE 
 
yields 
 

b + t < Q 
 
 
3.4.4 Decodable repairable candidates 
 
Any repairable candidate must be decodable. The lower bound on candidate sets 
that are repairable follows from the relations above, since the upper bound on 
classifying a candidate as incomplete coincides with the lower bound for 
classifying it as repairable: 
 

1 ≤ m ≤ Q − t 
 
3.4.5 Constraint summary 
 
The constraints developed the previous section can be summarized as follows: 

 
|CandidateSet| ≥ Q + b ⇒ COMPLETE 

|CandidateSet| < Q − t  ⇒ INCOMPLETE 
t + b + 1  ≤ Q ≤ N − t − b 

2t + 2b + 1 ≤ N 
1 ≤ m ≤ Q − t 

 
3.5 Discussion 
 
3.5.1 Byzantine clients 
 
In a storage system, Byzantine clients can write arbitrary values. The use of fine-
grained versioning (e.g., self-securing storage [52]) facilitates detection, 
recovery, and diagnosis from storage intrusions. Once discovered, arbitrarily 
modified data can be rolled back to its pre-corruption state. 
 
Byzantine clients can also attempt to exhaust the resources available to the 
protocol.  Issuing an inordinate number of write operations could exhaust storage 
space.  However, continuous garbage collection frees storage space “behind” the 
latest complete write.  (See Section 3.5.3.)  If a Byzantine client were to 
intentionally issue incomplete write operations, then garbage collection may not 
be able to free up space. In addition, incomplete writes require read operations to 
roll-back behind them, thus consuming client computation and network 
resources. In practice, storage-based intrusion detection [39] is probably 
sufficient to detect such client actions. 
 



 29

3.5.2 Timestamps from Byzantine storage-nodes 
 
Byzantine storage-nodes can fabricate high timestamps that must be classified 
as incomplete by read operations. Worse, in each subsequent round of a read 
operation, Byzantine storage-nodes can fabricate more high timestamps that are 
just a bit smaller than the previous. In this manner, Byzantine storage-nodes can 
“attack” the performance of the read operation, but not its safety.  To protect 
against such denial-of-service attacks, the read operation can consider all unique 
timestamps, up to a maximum of b+1, present in a ResponseSet as candidates 
before soliciting another ResponseSet. In this manner, each “round” of the read 
operation is guaranteed to consider at least one candidate from a correct 
storage-node and no more than b candidates from Byzantine storage-nodes. 
 
3.5.3 Garbage Collection 
 
The wait-freedom of our protocol utilizing versioning relies on data versions not 
exceeding the available storage capacity.  If storage capacity is exhausted, wait-
freedom cannot be guaranteed.  Prior experience indicates that it takes weeks of 
normal activity to exhaust the capacity of modern disk systems that version all 
write requests [52].   
 
Garbage collection is used to avoid storage exhaustion. Briefly, garbage 
collection works by each storage-node periodically performing a READ-like 
protocol to determine the latest complete write per data-item, and then freeing 
local versions that precede the latest complete write.  In doing so, however, it can 
interact with concurrent read operations and concurrent write operations in such 
a manner that a read operation must be retried. Specifically a read operation 
could classify a concurrent write operation as incomplete, the write operation 
could then complete, and garbage collection could then delete all previous 
complete writes. If this occurs, the read operation's next round will observe an 
incomplete write with no previous history.  Effectively, the read operation has 
“missed” the complete write operation that it would have classified as such. 
When it discovers this fact, the read operation retries (i.e., restarts by requesting 
a new ResponseSet).  Thus, in theory, a read operation faced with perpetual 
write concurrency and garbage collection may never complete.  In practice, such 
prolonged interaction of garbage collection and read-write concurrency for a 
given data-item should occur rarely, if ever. 
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